Jupyter Notebook Binder

Project flow

LaminDB allows tracking data lineage on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-γ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
💡 connected lamindb: testuser1/mydata

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
💡 connected lamindb: testuser1/mydata

Steps

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data

Register data through app upload from wetlab by testuser1:

# This function mimics the upload of artifacts via the UI
# In reality, you simply drag and drop files into the UI
def mock_upload_crispra_result_app():
    ln.setup.login("testuser1")
    transform = ln.Transform(name="Upload GWS CRISPRa result", type="upload")
    ln.track(transform=transform)
    output_path = ln.core.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
    output_file = ln.Artifact(
        output_path, description="Raw data of schmidt22 crispra GWS"
    )
    output_file.save()

mock_upload_crispra_result_app()
Hide code cell output
💡 saved: Transform(uid='9xzU7BsUZvEX', name='Upload GWS CRISPRa result', type='upload', created_by_id=1, updated_at='2024-05-29 10:02:02 UTC')
💡 saved: Run(uid='O3aiwS4EVpJtXjHSgsjk', transform_id=1, created_by_id=1)

Hit identification in notebook

Access, transform & register data in drylab by testuser2 in notebook hit-identification.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
import nbproject_test
from pathlib import Path

cwd = Path.cwd()
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/hit-identification.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/hit-identification.ipynb
Scheduled: ['hit-identification']
hit-identification 
✓ (3.792s)
Total time: 3.793s

Inspect data flow:

artifact = ln.Artifact.filter(description="hits from schmidt22 crispra GWS").one()
artifact.view_lineage()
_images/5d762e98cc63a0997bfae19e00647a58502517f5b43033df0889f6fb9dac9174.svg

Sequencer upload

Upload files from sequencer via script chromium_10x_upload.py:

!python project-flow-scripts/chromium_10x_upload.py
Hide code cell output
💡 connected lamindb: testuser1/mydata
💡 saved: Transform(uid='qCJPkOuZAi9q5zKv', version='1', name='chromium_10x_upload.py', key='chromium_10x_upload.py', type='script', created_by_id=1, updated_at='2024-05-29 10:02:08 UTC')
💡 saved: Run(uid='nwf1mgIlHQFksVjUP62m', transform_id=3, created_by_id=1)

scRNA-seq bioinformatics pipeline

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

cellranger.py

!python project-flow-scripts/cellranger.py
Hide code cell output
💡 connected lamindb: testuser1/mydata
💡 saved: Transform(uid='5bvTw15P9ccn', version='7.2.0', name='Cell Ranger', type='pipeline', reference='https://www.10xgenomics.com/support/software/cell-ranger/7.2', created_by_id=2, updated_at='2024-05-29 10:02:11 UTC')
💡 saved: Run(uid='jGMQ5vfgp9zU9DQi7Ivi', transform_id=4, created_by_id=2)
❗ this creates one artifact per file in the directory - you might simply call ln.Artifact(dir) to get one artifact for the entire directory

postprocess_cellranger.py

!python project-flow-scripts/postprocess_cellranger.py
Hide code cell output
💡 connected lamindb: testuser1/mydata
💡 saved: Transform(uid='YqmbO6oMXjRj65cN', version='2', name='postprocess_cellranger.py', key='postprocess_cellranger.py', type='script', created_by_id=2, updated_at='2024-05-29 10:02:13 UTC')
💡 saved: Run(uid='cgHcmFdSBWdq3nvkU2hJ', transform_id=5, created_by_id=2)

Inspect data flow:

output_file = ln.Artifact.filter(description="perturbseq counts").one()
output_file.view_lineage()
_images/df0261adb292b09c6091f0a07bef77a74b553f50a19dcad996aeddb613535ceb.svg

Integrate scRNA-seq & phenotypic data

Integrate data in notebook integrated-analysis.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/integrated-analysis.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/integrated-analysis.ipynb
Scheduled: ['integrated-analysis']
integrated-analysis 
✓ (4.342s)
Total time: 4.343s

Review results

Let’s load one of the plots:

# track the current notebook as transform
ln.settings.transform.stem_uid = "1LCd8kco9lZU"
ln.settings.transform.version = "0"
ln.track()
💡 notebook imports: ipython==8.24.0 lamindb==0.72.1 nbproject_test==0.5.1
💡 saved: Transform(uid='1LCd8kco9lZU6K79', version='0', name='Project flow', key='project-flow', type='notebook', created_by_id=1, updated_at='2024-05-29 10:02:19 UTC')
💡 saved: Run(uid='YSzZ2DJa5SWDBma4sRuN', transform_id=7, created_by_id=1)
Run(uid='YSzZ2DJa5SWDBma4sRuN', started_at='2024-05-29 10:02:19 UTC', is_consecutive=True, transform_id=7, created_by_id=1)
artifact = ln.Artifact.filter(key__contains="figures/matrixplot").one()
artifact.cache()
Hide code cell output
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/PDSYxeehi53eQ0BDVKCm.png')
display(Image(filename=artifact.path))

We see that the image artifact is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

artifact.view_lineage()
_images/601a2b2c8e499c9b5324c5840fc38e920f93a6d68d3c9a9b7fee19f12773292a.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Project flow").first()
transform.parents.df()
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
6 lB3IyPLQSmvt5zKv 1 Perform single cell analysis, integrate with C... integrated-analysis None notebook None None None None 2 2024-05-29 10:02:17.473906+00:00
transform.view_parents()
_images/e6b980bf86c5027409e94b99c330ef855cd047b78435cbf4d74196d6d522601b.svg

Understand runs

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

Artifact objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating an artifact:

run = ln.Run(transform=transform)
ln.Artifact(filepath, run=run)
When does an artifact appear as a run input?

When accessing an artifact via cache(), load() or backed(), two things happen:

  1. The current run gets added to artifact.input_of

  2. The transform of that artifact gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

artifact.load(is_run_input=True)

Query by provenance

We can query or search for the notebook that created the artifact:

transform = ln.Transform.search("GWS CRIPSRa analysis").first()

And then find all the artifacts created by that notebook:

ln.Artifact.filter(transform=transform).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
2 Nczsr6gy790OKv9LqE7M None hits from schmidt22 crispra GWS None .parquet DataFrame 18368 5GtKh_v__shMvLryIdXkKA md5 None None 1 True 1 2 2 2 2024-05-29 10:02:06.293481+00:00

Which transform ingested a given artifact?

artifact = ln.Artifact.filter().first()
artifact.transform
Transform(uid='9xzU7BsUZvEX', name='Upload GWS CRISPRa result', type='upload', created_by_id=1, updated_at='2024-05-29 10:02:02 UTC')

And which user?

artifact.created_by
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at='2024-05-29 10:02:08 UTC')

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).df()
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
1 9xzU7BsUZvEX None Upload GWS CRISPRa result None None upload None None None NaN 1 2024-05-29 10:02:02.021328+00:00
3 qCJPkOuZAi9q5zKv 1 chromium_10x_upload.py chromium_10x_upload.py None script None None None 5.0 1 2024-05-29 10:02:09.019669+00:00
7 1LCd8kco9lZU6K79 0 Project flow project-flow None notebook None None None NaN 1 2024-05-29 10:02:19.274689+00:00

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser1, type="notebook").df()
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
7 1LCd8kco9lZU6K79 0 Project flow project-flow None notebook None None None None 1 2024-05-29 10:02:19.274689+00:00

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
Artifact
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
12 PDSYxeehi53eQ0BDVKCm None None figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None 28814 vKSAeP8dZnBAPkdOYa_kRQ md5 None None 1 True 1 6 6 2 2024-05-29 10:02:18.520723+00:00
11 QyflA3AypTDCbc6MbJ8S None None figures/umap_fig1_score-wgs-hits.png .png None 118999 IlWQvuhi-VqBf1nCqWnYXQ md5 None None 1 True 1 6 6 2 2024-05-29 10:02:18.207280+00:00
10 LHUOUZC15a3wtkorhhrd None perturbseq counts schmidt22_perturbseq.h5ad .h5ad AnnData 20659936 la7EvqEUMDlug9-rpw-udA md5 None None 1 False 1 5 5 2 2024-05-29 10:02:14.303533+00:00
9 ybWoSEl2jUDlUhfXVR7g None None perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None 6 GAIrvKmrRtWi6AHJJJPuug md5 None None 1 False 1 4 4 2 2024-05-29 10:02:11.635893+00:00
8 vVoDOyEa6OdJKjWWT61J None None perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None 6 jx-Oqhm26FaVw-l6j22Qmg md5 None None 1 False 1 4 4 2 2024-05-29 10:02:11.635303+00:00
7 72gUT2E2Wz5i1IxQ23HE None None perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None 6 tynJni1JUh7t0MMQ7cMiVg md5 None None 1 False 1 4 4 2 2024-05-29 10:02:11.634435+00:00
4 yI2ogumA75jwAKnGolXv None None fastq/perturbseq_R2_001.fastq.gz .fastq.gz None 6 FWpD2h005_a6vBPEN5joXw md5 None None 1 False 1 3 3 1 2024-05-29 10:02:09.004973+00:00
Run
uid started_at finished_at is_consecutive reference reference_type transform_id report_id environment_id created_by_id
id
1 O3aiwS4EVpJtXjHSgsjk 2024-05-29 10:02:02.024909+00:00 NaT True None None 1 None NaN 1
2 rXvehOjJcI2AX1Tq7vSN 2024-05-29 10:02:05.789171+00:00 NaT True None None 2 None NaN 2
3 nwf1mgIlHQFksVjUP62m 2024-05-29 10:02:08.550577+00:00 2024-05-29 10:02:09.017807+00:00 True None None 3 None 6.0 1
4 jGMQ5vfgp9zU9DQi7Ivi 2024-05-29 10:02:11.174814+00:00 NaT None None None 4 None NaN 2
5 cgHcmFdSBWdq3nvkU2hJ 2024-05-29 10:02:13.249237+00:00 NaT None None None 5 None NaN 2
6 jHBMRcvowiZ51Ne4H81G 2024-05-29 10:02:17.479869+00:00 NaT True None None 6 None NaN 2
7 YSzZ2DJa5SWDBma4sRuN 2024-05-29 10:02:19.279949+00:00 NaT True None None 7 None NaN 1
Storage
uid root description type region instance_uid run_id created_by_id updated_at
id
1 p8hRjaZDM5qa /home/runner/work/lamin-usecases/lamin-usecase... None local None 54ZGqgkROOFf None 1 2024-05-29 10:02:00.154441+00:00
Transform
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
7 1LCd8kco9lZU6K79 0 Project flow project-flow None notebook None None None NaN 1 2024-05-29 10:02:19.274689+00:00
6 lB3IyPLQSmvt5zKv 1 Perform single cell analysis, integrate with C... integrated-analysis None notebook None None None NaN 2 2024-05-29 10:02:17.473906+00:00
5 YqmbO6oMXjRj65cN 2 postprocess_cellranger.py postprocess_cellranger.py None script None None None NaN 2 2024-05-29 10:02:13.246759+00:00
4 5bvTw15P9ccn 7.2.0 Cell Ranger None None pipeline https://www.10xgenomics.com/support/software/c... None None NaN 2 2024-05-29 10:02:11.172162+00:00
3 qCJPkOuZAi9q5zKv 1 chromium_10x_upload.py chromium_10x_upload.py None script None None None 5.0 1 2024-05-29 10:02:09.019669+00:00
2 T0T28btuB0PG5zKv 1 GWS CRIPSRa analysis hit-identification None notebook None None None NaN 2 2024-05-29 10:02:05.784330+00:00
1 9xzU7BsUZvEX None Upload GWS CRISPRa result None None upload None None None NaN 1 2024-05-29 10:02:02.021328+00:00
User
uid handle name updated_at
id
2 bKeW4T6E testuser2 Test User2 2024-05-29 10:02:11.163057+00:00
1 DzTjkKse testuser1 Test User1 2024-05-29 10:02:08.418467+00:00
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
✅ logged in with email testuser1@lamin.ai (uid: DzTjkKse)
Traceback (most recent call last):
  File "/opt/hostedtoolcache/Python/3.10.14/x64/bin/lamin", line 8, in <module>
    sys.exit(main())
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 367, in __call__
    return super().__call__(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1157, in __call__
    return self.main(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 152, in main
    rv = self.invoke(ctx)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1688, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1434, in invoke
    return ctx.invoke(self.callback, **ctx.params)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 783, in invoke
    return __callback(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamin_cli/__main__.py", line 103, in delete
    return delete(instance, force=force)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/_delete.py", line 98, in delete
    n_objects = check_storage_is_empty(
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/core/upath.py", line 798, in check_storage_is_empty
    raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb contains 5 objects ('_is_initialized' ignored) - delete them prior to deleting the instance
['/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/72zCrUmT6ooBqMM3r2P7.py', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/MwaZXgmScJJjXvH2fjIK.txt', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/Nczsr6gy790OKv9LqE7M.parquet', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/PDSYxeehi53eQ0BDVKCm.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/QyflA3AypTDCbc6MbJ8S.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/_is_initialized']